Modeling material stress using integrated Gaussian Markov random fields

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transformed Gaussian Markov Random Fields and 1 Spatial Modeling

15 The Gaussian random field (GRF) and the Gaussian Markov random field (GMRF) have 16 been widely used to accommodate spatial dependence under the generalized linear mixed 17 model framework. These models have limitations rooted in the symmetry and thin tail of the 18 Gaussian distribution. We introduce a new class of random fields, termed transformed GRF 19 (TGRF), and a new class of Markov r...

متن کامل

Classification of textures using Gaussian Markov random fields

The problem of texture classification arises in several disciplines such as remote sensing, computer vision, and image analysis. In this paper we present two feature extraction methods for the classification of textures using two-dimensional (2-D) Markov random field (MRF) models. It is assumed that the given M x M texture is generated by a Gaussian MRF model. In the first method, the least squ...

متن کامل

Approximating Hidden Gaussian Markov Random Fields

This paper discusses how to construct approximations to a unimodal hidden Gaussian Markov random field on a graph of dimensionnwhen the likelihood consists of mutually independent data. We demonstrate that a class of non-Gaussian approximations can be constructed for a wide range of likelihood models. They have the appealing properties that exact samples can be drawn from them, the normalisatio...

متن کامل

Subset Selection for Gaussian Markov Random Fields

Given a Gaussian Markov random field, we consider the problem of selecting a subset of variables to observe which minimizes the total expected squared prediction error of the unobserved variables. We first show that finding an exact solution is NP-hard even for a restricted class of Gaussian Markov random fields, called Gaussian free fields, which arise in semi-supervised learning and computer ...

متن کامل

Fully Bayesian Field Slam Using Gaussian Markov Random Fields

This paper presents a fully Bayesianway to solve the simultaneous localization and spatial prediction problemusing aGaussianMarkov randomfield (GMRF)model. The objective is to simultaneously localize robotic sensors and predict a spatial field of interest using sequentially collected noisy observations by robotic sensors. The set of observations consists of the observed noisy positions of robot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Statistics

سال: 2019

ISSN: 0266-4763,1360-0532

DOI: 10.1080/02664763.2019.1686131